Paper SEO05

Sublime Secrets of the SAS® SQLheads

Sigurd W. Hermansen, Westat, Rockville, Maryland

ABSTRACT

A clever application of pure science with a hint of magic, SAS SQL
reduces solutions to many complex database programming
problems to a few well-chosen phrases. In this look behind the
scenes we go beyond the usual demonstrations of how SELECT
and JOIN queries work and reveal the sublime secrets of SAS
SQLheads. Did you know that true SQLheads organize datasets
ahead of time to make SQL queries look simpler and more effective
than SAS data step programs? Or that, under the right
circumstances, SQL solutions rely on nothing more than grade
school math? Shocking, yes, but it does not end there. SQLheads
communicate with many different database systems using the ANSI
SQL language. Find out why SAS data step experts are defecting
to the SQLheads at an alarmingly high rate. Examples of SAS SQL
in action show methods for identifying duplicate records, data
filtering, linking SAS datasets on partial and inexact keys, data
summaries, querying SAS metadata, and testing efficiency of
queries.

INTRODUCTION

The SAS Institute introduced the PROC SQL implementation of the
ANSI Structured Query Language (SQL) in 1989. Veteran SAS
System DATA step programmers viewed this new take on SAS
database programming with palpable apathy and distrust. A lunatic
fringe, the ‘SAS SQLheads’ began campaigning for an immediate
overthrow of the DATAsteppian rulers of the SAS user community.
Aided by SAS Institute insider Paul Kent, the driving force behind
PROC SQL, and others in Sl with eyes on the burgeoning market for
interfaces to relational database systems, the SAS SQLheads have
evolved from a small lunatic fringe to a much more imposing lunatic
fringe. While DATAsteppians continue to find new ways to program
solutions to old problems, the SQLheads are reaching out to the
larger community of SAS programmers. This brief introduction to the
sublime secrets of the SAS SQLheads gives the reader an inside
view of the aesthetics and discipline of this mysterious cult.

FIRST, DO NO HARM.

A SAS SQL select query of the form SELECT * FROM <SAS
datasetl>,<SAS dataset2>; does not alter, rearrange, delete, or
change attributes of SAS datasets or other sources of data. What
harm can it do?

It may send huge volumes of data to display devices, disk, or
memory. It may squander a system’s CPU, storage, or network
resources. Novice SQL programmers can (and often have) made
themselves very unpopular with systems administrators by
submitting a simple SQL program that brings an entire system to its
knees. A few simple precautions will keep you off the system
administrators’ short list of troublemakers:
e Always check to make sure that SQL queries have all
appropriate conditions in place:
SELECT * FROM <SAS dataset> WHERE <condition> does just as
it reads. It selects only those rows (obs) that meet the condition
specified in the WHERE clause. If, for example, a dataset has 100
rows, and each row has a distinct number between 1 and 100
(though not necessarily in any order), the SQL statement,

SELECT n FROM <dataset> WHERE n BETWEEN 1 AND 25;
will select the column n in 25 rows where n ranges from 1 to 25.
The Boolean condition n<=25 would produce the same results in this
particular case. WHERE conditions limit the number of rows a query

inputs from a table. WHERE conditions and related ON conditions

also control links among datasets, as explained under NORMALIZE

DATABASES.

e Test the concept of a query with simple examples before
pulling the trigger:

The number of rows and columns of data does not matter that much.
W hether operating on six rows or millions of rows of data, a
SELECT query acts as if follows a few simple rules. More on this
under THINK BRUTE FORCE ...

. Estimate the size of the yield of a query:

A SAS SQL query selects data from one or more datasets and yields
at most a single tabular data object. This makes it possible to
estimate the burden it imposes on storage media or on display
devices from the expected dimensions of the yield of the query. See
SIZE UP YOUR QUERIES for more ideas.

KIS BNTS

An old military saying translates in polite language to ‘Keep it simple’
(KIS). An important qualification: ‘But Not Too Simple’ (BNTS).
Typically programmers follow a divide and conquer strategy that
splits a solution to a problem into simpler sub-problems. The idea of
splitting a process into many simpler paths has an intuitive appeal,
but the strategy begins to turn on itself when paths proliferate to a
degree that the programmer begins to loose track of some of them.
The old problem of loop control gives us a perfect example of how
the divide and conquer strategy can go wrong. In a procedural
language such as C, we might assign an initial value to a variable
prior to a loop and increase the value of the variable within the loop.
A condition for continuing the loop may appear at the beginning or
end of the loop. To keep things simple for now, say we name the
variable x, and we intend to have the loop continue through a specific
range of the value of x:

Do; WHILE <condition>(?)> continue;

<statements>; x=x+abs(y); <statements>

UNTIL<condition>(?) repeat;

Now, if we decide to do something repeatedly with the value of x, the

series of values of x now depends on

e Whether the loop control condition appears at the beginning or
end of the loop. For example, if (not x>1099) apppears at the
beginning of the loop, then x will not attain the value 1100. If the
same statement appears at the end of the loop, it will;

e Whether the condition requires > or >=, < or <=, etc;

e Whether a statement preceding x=x+abs(y) or following
changes the value of y.

The list could go on and on. Unexpected results of looping account

for many of the more costly and frustrating programming errors

A SAS Data step simplifies loop control. Since the SET and
MERGE statements loop by default through each row ofa SAS
dataset, conditions and assignments apply in turn to each row of
data. The physical order of records in the file that contains the
dataset determines the order of processing of rows of data. The
Data step offers a different level of simplicity. The SAS compiler
operates on columns of data, not individual values. This is simplicity
of a second kind, a matter of discipline. All of the items in a column
belong to the same data type and get treated the same. The
programmer gives up item by item control for programming
simplicity.

SQL takes programming discipline one step ahead in the direction of
programming simplicity. No loops. No ordering of columns. No
physical order of rows of data. Just select columns or expressions
from tables where a condition holds. SQLheads revel in the abstract
clarity and expressive power of a SQL query. Limiting data
structures to tabular data objects, as illustrated in the next section,
encourages good database design practices and optimizes SQL for
database programming.

NORMALIZE DATABASES

Organizing data up front pays dividends. SQL derives from and
works best in the context of relational database design. A relational
database does not require Oracle or MS SQL Server or any other
commercial relational database management system. Better logical
organization of data does more for a database than moving it from
one database system to another.

A few guidelines do wonders for database programmers:

. Embed as much information as possible within data tables;

A convincing example contrasts a typical flatfile design,

PersonsContacts

personiD sex birthDate contactDatel purposel outcomel

contactDate2 purpose2,outcome?2

with a standard relational design,

Persons Contacts

personlD sex birthDate contactDate purpose outcome
personliD

A few repeating groups of column variables look great in a

spreadsheet, but any large number off repeating groups of variables

seriously tilts the ratio of column space to data. The maximum

number of repeating groups of variables determines the number of

columns required. Not only may many columns contain high

proportions of missing data, the burden of managing many variable

labels falls on the database programmer. Doubling the number of

visits in this example doubles the number of variables in

PersonsContacts.

. Different datasets for different dimensions.

Mixing dimensions leads to problems obvious to anyone who has

collected multiple observations of sex and birthDate values. This

structure of data,

Person_Contact

personlD sex birthDate contactDate purpose outcome

leaves the database programmer liable to inconsistent reporting. The
values of sex and birthDate for a given personID depend on which of
the rows of data the programmer references.

So what if the database does have repeating groups of column
variables or mixed dimensions? What's a database programmer to
do?
. Create appropriate views of data.
A simple macroprogram creates a normalized view of
PersonsContacts with __n repeating groups of variables:
%macro normalize(__n); PROC SQL;
CREATE VIEW PersonsVW AS SELECT personlD,sex,birthdate
FROM lib.PersonsContacts;
CREATE VIEW ContactsVW AS

%do__i=1%to&_n,;

SELECT personID,contactDate&__i. AS contactDate,

purpose&__i. as purpose,outcome&__i. AS outcome
FROM lib.PersonsContacts
%if (& _i.<& n.) %then %do; OUTER UNION CORR

%end,;

%end,;
; QUIT;
%mend normalize;
Whenever required the two tables combine naturally into a single
consistent relation among persons and contacts, The SELECT ...
ON ... query,
CREATE TABLE personContact AS
SELECT t1.*,t2.sex,t2.birthDate
FROM ContactsVW AS t1 LEFT JOIN PersonsVW AS t2
ON tl1.personiD=t2.personID
WHERE <condition>;

Links the rows of data on the key value in each row. No special row
ordering or pointers required!

Ordinary data values in the personID columns serve as ‘keys’ that
link Persons and Contacts. In SQL, linking keys do not have to
have the same name. Although they have to have the same data
type, functions of column variables can also serve as keys, so one
may convert values from, say, numeric to character type in an ON
condition (for example, ... ON put(tl.personID,z8.) = t2.personlID to
right set and fill with leading zeroes). A composite of many column
variables spread throughout a row in a dataset may also serve as a
linking key.

A database programmer can use the views ContactsVW and
PersonVW as a virtual, normalized database. The views contain all
of the information in the original flatfile database. The original flatfile
database remains intact. Better organization of data and simple
programs replaces convoluted programming around the defects of
poorly designed databases.

THINK BRUTE FORCE

A SQL compiler optimizes queries. Though it does not always
succeed in finding the most efficient solution for each specific query,
the SAS SQL query does look at attributes of datasets, such as the
SORTEDBY property, and at indexes. All this activity occurs in the
background. The database programmer has little direct control over
the query plan that the SAS SQL compiler devises. While this lack
of control tends to frustrate DATAsteppians, it frees SAS SQLheads
to focus on the solution to a programming problem and let the SQL
compiler find the path to the solution.

Just as a Zen archer aligns bow and arrow to target, a database
programmer arranges a SQL statement to fit a tabular solution to a
query. Logic programmers call that ‘declarative programming’.
SQLheads know the forms of queries needed to produce specific
solutions.

How do SQLheads know the forms of queries needed to declare a
solution? They start with a small example and think brute force. The
SQL compiler may improve on the brute force (least intelligent)
method for executing queries, but in each and every case the
improved method produces exactly the same solution as the painfully
tedious brute force method. That means that the database
programmer only has to understand the primitive brute force method,
and that the programmer can verify the solution by systematically
applying the brute force method to a minimally complete example of
a database .

For instance, a SQL JOIN query that includes ... A INNER JOIN B
ON A.x=B.m AND B.n=A.y links

A to B

Xyz mnp
133 134
132 145
124 156
141 143

on the condition that the value in column x in table A (A.x) equals
the value in column m in the table B (B.m) and the value in column y
in A (A.y) equals the value in column n in B (B.n). The brute force
method by default follows this algorithm (note the SQL convention
that qualifies variable names with table names
(<tablename>.<variablename>):
1) compare row in A to each row in B

if the condition holds, SELECT column(s) from rows A,B
2) repeat above through last row in A.

Preceding the ... JOIN ... ON ... clause in the query with SELECT
A.xas x,B.nas n,A.z as p,B.p as z, the query yields:

A B - yield -
Xyz mnp Xnpz
133 ————p 134_’1334
132 1324

145—P 1415
124 i: 156
141 143— P 1413

A simple SELECT ... FROM ...<dataset> WHERE ... query yields
whatever list of column attributes the programmer specifies between
the SELECT and FROM keywords.

The SAS System makes it easy to create minimally complete
instances of data sources that a programmer needs to test SAS
SQL queries. Neophytes work through brute force solutions as an
aid to learning how to use SQL. True SQLheads use brute force
methods of solution to prove the concept of a query and check to
make sure that the SAS SQL query execution plan matches what the
programmer expects.

ALL | NEED TO KNOW | LEARNED IN 6" GRADE

At first SQL seems too limited to have much value to a real
programmer. What good does it do to read columns from a file and
subset rows? Any number of toy programming systems can do that.

The tieing together of SQL to the logical objects called ‘relations', of
linkage keys in databases to sets, and of conditions to Boolean logic
means that a database programmer can represent any information
as relations, and represent all operations that select, subset or
combine information as set operators on key values.

Those ties connect SQL to a couple of thousand years of success
with the first-order logic and set operations that digital computers
handle so well. Over the years basic logic and set theory have
infiltrated the ‘new math’ that students usually begin trying to master
in the 6™ grade. In the context of appropriate database design, SQL
provides a good programming environment for most of what
database programmers do.

WHERE conditions handle very large numbers of simple Boolean
True or False expressions of one or two values (say, x>=1) The
NOT, AND, and OR operators make it possible to qualify simple
expressions. SQL has all of the tools needed to filter and subset.
SAS SQL gives the database programmer a rich assortment of
operators, functions, and formats to use in WHERE conditions.
Logical conditions may include, for example, functions that return 0
or another value. In SAS the 0 represents False and the other values
True. A logical expression ‘x=1 AND INDEX(txt,c) AND z>-3 would
fail if the value of the variable txt does not contain the value of the
variable c, since the INDEX() function returns 0 if the string value of
the second argument does not appear in the string value of the first
argument.

CASE ... WHEN ... clauses have much the same role as
conditional assignments of values to variables (IF ... THEN ... ELSE
assignments of a different value depending on the outcome of a
condition in, say, a C, VB, or SAS DATA step program). A CASE
clause substitutes for a column name ina SELECT list, so it must
yield a value that will fit in a row-column cell of a table (or else
generate a run-time error). Though the logic often looks backwards,
it works the same as an IF <condition holds true> THEN ...
assignment:
... <select list>, CASE WHEN x=5 and y=8 THEN b

ELSE 0

END as z, <select list>

CASE WHEN clauses nest in much the way IF ... THEN
assignments nest.

SAS SQL lets us distinguish row subsetting logic (WHERE
conditions) from alternative assignments to column variables (CASE
WHEN ... END), and both from conditions that control JOIN ...
ON'’s and UNION's of tabular data objects such as SAS datasets. If
we constrain values in key columns of data in a tabular data object to
a different and distinct value in each row, we make the key values a
set. (When a key spans several columns of a table, we may think of
the key as a distinct superstring that combines several column
values.) For any sets A and B, the Venn diagrams that follow remind
us how the key values in two tables relate to each other. The
different shades represent the sets that result from the intersection,
union, and complement operators (&, +, and -):

COMPLEMENT (B-A)

INTERSECTION B
(A&B)

UNION (A+B)

An intersection of two sets of key values produces a set that
contains all of the values that appear in both sets. The union
contains all of the distinct keys in A or B. The complement contains
all of the keys in one set (B in this example) but not in the other (A).

Three set operations may not seem like much to work with, but
intersection, union, and complement separately and combined give
us all of the logical operations that we need to combine data tables
representing relations, including MERGES, APPENDS, and table
look-ups. For example,

Result wanted Operation(s) SQL clause
-Link rows IDs= intersection A INNER JOIN B ON ...
-All rows of A, complement,

link to B Ids= intersect,union A LEFT JOINBON
- All rows A+B, complement,

link A&B Ids= intersect,union A FULLJOINBON
-Append A+B union A OUTER UNION B ...

So far we have said nothing about the other column variables in the
two tables. Since being on the same row relates the other values to
the key, linkage on the key also links the other column values on
rows related to the key:

other columns [a]«—— key[a] = key[b] «——other columns[b]

In other words, the other variables in a row follow the keys.

NEVER HAVE TO SAY 'PROC SORT’

Putting data in a specific physical order introduces two major
inefficiencies. First, sorting requires a lot of moving around of data
within physical files. Second, putting data in one sort order for one
purpose often arranges data in the wrong order for another purpose.

Sorting of linkage keys often turns out to be the most efficient way to
limit the range of searches for matching key values. Nonetheless,
the traditional DATAsteppian practice of sorting datasets on BY
variables prior to MERGE’ing them often introduces gross

inefficiencies into database programming. Consider this standard
MERGE sequence:
PROC SORT DATA=largel OUT=largelS;

By timekey;
DATA joinedDS;

MERGE largelS (in=inl) large2S (rename=(i=ii) in=in2);

BY timekey;
IFin1 AND in2 AND i<=10 AND ii>=999990;

If only a fraction of the rows in test have 1<=10 and ii>=999990,
SORT'ing the dataset test before subsetting it adds a substantial
burden to the program. A close to equivalent SQL solution gives the
SQL compiler latitude to subset the dataset test prior to indexing or
rearranging its physical order. The subset sorts faster than the full
dataset (usually by a factor of n(log(n)) for n rows of data). A
contrived example illustrates a dramatic saving of processing time
and effort due to optimizing a query that joins small subsets of rows
in two datasets containing a million records each. Merely sorting one
of the datasets takes about 11 seconds. The SQL query,
CREATE TABLE joinedl AS
SELECT tl1.*,t2.member_ID AS m,t2.time AS't,
t2.timekey AS tk, t2.type AS typ
FROM largel AS t1 INNER JOIN large2 AS t2
ON tl.timekey=t2.timekey
WHERE tl.i between 1 and 10

AND t2.i between 999990 and 1000000;
finds the solution in less than 2/3’s of a second. It ‘pushes down’ the
WHERE conditions and subsets the datasets prior to sorting.

To be fair to our DATAsteppian friends, applying WHERE
conditions as PROC SORT streams data from the data sources
reduces dramatically the time required to order small subsets prior to
a MERGE, as in,
PROC SORT DATA=largel (WHERE=(i<=100)) out=largelS;

by timekey;
run;

(except that the MERGE will always produce results that vary with
the physical order of variables not in the BY group where both of the
datasets being MERGE'd contain the same BY value in more than
one observation).

Also, caveat seems appropriate for the case of a ‘disjunctive’ (OR) in
a WHERE condition. SAS SQL optimizes ‘conjuctive’ (AND)
conditions at the expense of disjunctive conditions. As a result, it
pays to subset data sources in in-line queries prior to joining them,
as in:
...FROM (SELECT * FROM largel WHERE i BETWEEN 1 AND
1000 OR i BETWEEN 999000 AND 1000000) AS t1
INNER JOIN

(SELECT * FROM large2 WHERE i BETWEEN 1 AND 1000

OR i BETWEEN 999000 AND 1000000) AS t2
ON t1.timekey=t2.timekey; ...

The sub-queries may improve query performance dramatically in this
case. The sub-query filters cut down substantially on the perverse
effects of multiples of key values occurring in both data sources.

SQL generally eliminates the problem of deciding when and how to
subset and order data tables before combining them. SAS
SQLheads prefer envisioning solutions to directing traffic from
dataset to sorted dataset to MERGE BY.

STREAM WITH A VIEW

As illustrated in the last section, a programmer can substitute a SQL
‘in-line view' for a dataset name in a FROM ... clause. A SQL in-line
view consists of an ordinary SELECT ...FROM ... statement
enclosed in parentheses. One can think of a view as a program that
produces the same result as reading data sequentially from a data

source. In that sense a view produces a stream of data. It acts as a
virtual dataset reference in a SQL query. Using views to stream data
into a query, as opposed to writing results of queries to WORK
datasets, reduces the burden on data storage devices such as
disks. Hermansen (2002) describes how to nest queries in SAS
SQL and how to determine whether or not a nested sub-query will
yield the type of relation (table, column, or cell) required by its
context in a SQL query.

BYE BY GROUP, HELLO GROUP BY

SQLheads don't attract many groupies. That may explain why the
GROUP BY ... HAVING ... clause seems something of an
afterthought. The GROUP BY HAVING clause in a SQL
statement always follows the FROM clause in a SELECT query,
and, if the query includes one, the WHERE condition. SQL
programmers usually learn to use the GROUP clause effectively
long after they gain a reasonably good understanding of the other
components of a SELECT query. In fact, a programmer could avoid
grouping data altogether by partitioning data on values of column
variables before applying the same process to each partition. The
GROUP BY ... clause simply makes partitioning and processing
each partition individually so convenient that database programmers
find eventually that they have to learn how to take advantage of it.

One secret to understanding the SQL GROUP BY ... clause: it
occurs near the end of a SELECT statement for a reason. At that
stage the data have begun streaming from data sources through, if
included, a WHERE condition filter. The elements of the SELECT
list have been evaluated. If the SELECT list includes an summary
function, then and only then the SQL compiler needs to know how to
partition a tabular data object into groups of rows. The SQL solution
requires a summary value for each group (or to compute summary
values for a HAVING clause). We might use the partial query,

... SELECT age,race,sex,city, COUNT(*) ...

GROUP BY age,race,sex,city HAVING COUNT(*)>6 ...
in an attempt to ‘disclosure-proof’ a class of attribute values by
limiting reporting of classes containing fewer than seven subjects. In
typical applications of GROUP BY clauses, the columns included in
the SELECT list, other than summary values, match the GROUP BY
list. In atypical applications, the SELECT list contains attributes not
included in the GROUP BY list. The SAS SQL compiler allows this,
but as a precaution it issues a warning message. The summary
values correspond to the GROUP BY partitions, but the number of
rows in the yield of the query may exceed the number of distinct
classes of the grouping variables. SELECT'ing age, race, sex, and
city but grouping by age, sex, and city only may yield a summary
table that appears to overcount subjects. For these data,

age race sex city
43 B F Duluth
34 w M Boise
43 w F Duluth
34 A M Boise

SAS SQL produces

age race sex city count
43 B F Duluth 2
34 w M Boise 2
43 w F Duluth 2
34 A M Boise 2

The sum of the counts obviously exceeds the number of subjects.
The HAVING condition may then come into play. It could, for
example, constrain the solution to the minimum value of race:
....GROUP BY age,sex,city HAVING race=min(race)....

The HAVING condition selects only the row with the minimum value
of race in each group:

age race sex city count
43 B F Duluth 2
34 A M Boise 2

Of course that adjustment only works where only one row in each
group has the extreme value. The undocumented MONOTONIC()
function in SAS SQL adds a distinct sequence number to each row
of data. The SAS-L archives contain a number of postings on the
methods for using and problems associated with MONOTONIC().

FROM METADATA TO MACROVARIABLES

Relational databases do not differentiate queries of metadata (data
about data) tables from queries of ordinary data (data just being
data). SQL queries work equally well for either. SQLheads take
advantage of this feature. Say one is looking for duplicate rows of
data. The GROUP BY ...HAVING count(*)>1 clause will select
duplicate rows, but requires a comma delimited list of column
variable names between BY and HAVING. What to do? SQLheads
prefer to stay on the abstract side of typing lists. Fortunately, SAS
SQL provides views of metadata. The first query,
SELECT name INTO :v SEPARATED BY ""
FROM DICTIONARY.columns
WHERE libname="WORK" AND memname="RECRODS";

constructs a list of column variable name in the dataset recrods.
Substituting the list into the SELECT list and GROUP BY lists of the
next query,

CREATE TABLE dupsID AS

SELECT &v,COUNT(*) AS n FROM recrods

GROUP BY & HAVING COUNT(*)>1 ;
to produce a table of rows that have the identical values in
corresponding column variables.

SAS Version 9 has expanded substantially the number of dictionary
views. Under V9 SQLheads have access to dictionary.vindex, and
dictionary.vrefcon. The former lists <table>.<column> pairs indexed
and distinguishes single from composite indexes. The latter lists
referential integrity constraints. In SAS Explorer, these new V9
metadata views appear in the SASHELP library.

EMPOWER THE SAS SYSTEM

SAS SQLheads burrow through boundaries of operating and
database systems. Changes in platforms, database systems, and
technologies do not change the logical designs of databases. Once
a database programmer has access to the metadata of another
database system, the game is over. The SAS System provides all
the tools SQLheads typically need to extract data from external data
and prepare data inserts and updates. While the leading commercial
RDBMS vendors encourage their contacts within organizations to
buy their proprietary and expensive front-end and back-end
development tools, SAS SQLheads quietly develop network
connections, configure ‘middleware’, and build views of data sources
throughout the home organization and beyond. In the struggle for
survival in the world of information technology, SAS SQLheads have
to empower the SAS System in their organizations to survive.

The SAS/ACCESS middleware for generic access to data sources
(mainly Open Database Connectivity (ODBC) and OLE-DB) and so-
called ‘native drivers’ for DB2, Oracle, and Sybase support
connections to a very large proportion of data currently being stored
in database systems. Local network and Internet connections to file
systems give database programmers access through ftp and
sockets to a perhaps even greater volume of data.

The SAS System currently has a critical role in moving data into,
within, and from database and file systems. The old database
system front-ends for data entry are being supplanted increasingly
by Web forms, gimmickware, and bulk loading from external data
sources. SAS preprocessing of data checks for data quality,
including the key and referential integrity required by RDBMS's. SAS
analysis and reporting tools make best use of valuable data
resources. SAS also gives systems programmers and clients
access to and control of data in otherwise closed database systems.

To burrow successfully through system boundaries, the database
programmer must understand two concepts: ‘connection strings’
and engines. In this example, the connection strings appear in
quotes:

LIBNAME SqlLib ODBC NOPROMPT="DRIVER=SQL
Server;Database=NCIDiet;Server=TestWEB1" schema='dbo";

The quotes suggest that SAS will send the strings as a message
(consisting in this example of keywords and parameter values)
across a system boundary to a connection object. The connection
object, a block of computer memory, has to be installed and
configured to read appropriate connection strings. The strings in this
example do not include USER or PASSWORD information, so the
connection object has to obtain them from the user’s environment.
When a correct string streams to the connection object, it interprets
the string and establishes a connection through the LIBNAME
reference (SqlLib) to the SAS session. To make the connection
intuitive, SAS has kindly arranged to have the connection to an
external data source look much like a connection to a SAS library on
disk. From the viewpoint of the programmer, it has almost the same
effect.

How does SAS know that it is reading from an external database and
not from a disk file? The ODBC engine name in the example tells
SAS to parse a data stream from the external database using the
ODBC protocol for data transfers. The SQL query,
CREATE VIEW SQLSerTbhIMDVW AS

SELECT * FROM dictionary.tables

WHERE UPCASE(libname)='SQLLIB";

requests data from a database dictionary or catalog. In this case,

the LIBNAME reference ‘SQLLIB’ in the WHERE condition specifies
a SQL SERVER database. (See the LIBNAME above). The SAS
System translates the request into SQL Server SQL and forwards it
to the SQL Server database for processing. SAS uses the ODBC
protocol to convert the yield of the query to a SAS view.

If we find the name of a table or view on the catalog of the SQL
Server database, we can use it instead of a SAS dictionary reference
to capture the tabular metadata object:

CREATE VIEW SQLSerldxKeyVW AS

SELECT * FROM SQLLib.sysindexkeys;

That gives us access to external database system metadata even if
SAS does not have a dictionary reference corresponding to it.

Once we have access to the metadata of an external database
system, we have the keys to the castle (not counting hassles over
access rights and battles with DBA’s dedicated to the principle that
all access to data in their databases should go through them). As an
alternative to sending a connection string via a LIBNAME statement,
we can ‘pass thru’ queries to external database systems in a
connect statement. Oracle, Sybase, and DB2 examples follow:
proc sq;
connect to oracle (user=ora_id orapw=ora_pwd path="@alias")

select * from connection to oracle (select * from tablename);
disconnect from oracle;
connect to sybase (user='sybase_username'
sybpw='sybase_passwd' server=SERVER);

select * from connection to sybase (select * from tablename);
disconnect from sybase;
connect to db2 (database=database);

select * from connection to db2 (select * from tablename);
disconnect from db2;

The queries differ only in the connection strings, engine names, and
the syntax of the queries. In each case the innermost query that
passes thru to the database system has to be in the syntax of the
SQL flavor of the database system.

S| recommends the LIBNAME (native driver) method for database
system access in typical situations. Exceptions include queries that

use keywords and statements specific to the host database system
and notto SAS, and grouping operations that only the host database
system can optimize.

The close correspondence of SAS SQL queries to native queries in
database systems empowers SAS to extract metadata and data from
external database systems. In any organization that has different
database systems operating concurrently, SAS SQLheads have a
natural advantage.

MANAGE MISSINGS, NULLS, FUZZY LINKS

No database systems eliminates all the problems inherent in missing
and null values. SAS SQL has no magic formula for handling these
special values. ANSI SQL specifies a three-value logic for evaluating
expressions that include missing or NULL values, whereas SAS
DATA steps use a two-value logic. SAS SQL makes uneasy
compromises between the two logics. In grouping operations, for
example, SAS SQL treats missing values in grouping variables as
matches to one another, while in summaries SAS SQL does not
include missing values in calculations.

SQL does have a method for recognizing a missing or NULL value.
The unary operator ‘IS MISSING’ combined with a column variable
name evaluates to True whenever the variable has a missing value
(‘" or special missing values if numeric or blank if character) or
NULL where, as in a LEFT JOIN or UNION, values of variables in
unmatched data items remain undefined. SAS SQLheads use this
method to detect missings and NULL's and program around the
difficulties they create. For example, SAS SQL evaluates a missing
value as smaller than a non-missing value. The WHERE condition
(x<0) resolves to True when the value of the variable x is
missing. The correct specification for the WHERE condition
depends on context. Generally it makes sense to exclude undefined
values. The condition (x<0 AND NOT x is missing) does that. In
special cases it may make better sense to convert undefined values
to zeroes. SQL provides the COALESCE function for that purpose:
(COALESCE(x,0)<0)
Functions such as COALESCE(), SOUNDEX(), and SPEDIS() yield
‘fuzzy' values that work perfectly well in WHERE and ON conditions,
but tend to confound SAS SQL's query optimization planning. In-line
views presented earlier put the fuzzy values in a data stream that the
SAS SQL compiler can index or order.
See Hermansen(2001) for a more on fuzzy linkage.

SIZE UP YOUR QUERIES

SQL query execution plans take action to reduce the volume of data
at the earliest possible stage of processing. As a rule the SAS SQL
query optimizer does a reasonably good job of restricting selections
of column variables to those required for subsequent stages of
processing and subsetting rows to those required for the solution.
SQLheads combine JOIN's and UNION's in the same query, using
in-line views if necessary, so the SQL compiler can optimize the
query. While a good execution plan helps, it does not always prevent
overuse of data storage resources. A crucial factor in determining
data storage requirements for a query lies hidden in data: the
number of multiples of key values in each of the tables being
JOIN'ed. A good database design offers the first line of defense
against multiples of key values. SQLheads also use SQL to count
repeating key values in tables prior to joining them, and they control
duplicates prior to joining the tables.

DISCLAIMER: The contents of this paper are the work of the author
and do not necessarily represent the opinions, recommendations, or
practices of Westat.

ACKNOWLEDGEMENTS

Westat colleagues and SAS-L contacts contributed substantially to
the content of this article. Special thanks to Peter Crawford for
information about dictionary tables in SAS V9. The author takes full
responsibility for errors or omissions that remain.

REFERENCES

Hermansen, S. “Ten Good Reasons to Learn SAS Software's
PROC SQL", Proceedings SUGI 1997, San Diego, 1997.
Hermansen, S.,'Structured Query Language: Logic,Structure, and
Syntax, Proceedings of SESUG 2002, Savannah, 2002.
Hermansen, Sigurd, 'Fuzzy Key Linkage', Proceedings of SSU
2001, New Orleans, 2001.

Kent, Paul 'Inside PROC SQL's Query Optimizer', TS-320,
http://ftp.sas.com/techsup/download/technote/ts320.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Sigurd W. Hermansen

Westat, An Employee-Owned Research Company

1650 Research Bivd.

Rockville, MD 20850

(301) 251-4268

hermans1@westat.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies.

